
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Real-time Fluid-based Music Analyzer
CS 284A: Computer Graphics and Imaging, Spring 2021

LLOYD BROWN, YINAN CHEN, SOPHIE WU, WEIYAN ZHU, UC Berkeley

ACM Reference Format:
Lloyd Brown, Yinan Chen, Sophie Wu, Weiyan Zhu . 2021.
Real-time Fluid-based Music Analyzer: CS 284A: Computer
Graphics and Imaging, Spring 2021. 1, 1 (May 2021), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Our goal is to implement a fluid-based music analyzer
that allows user interaction. To achieve this goal, we
based our project on the Real-Time Fluid Dynamics for
Games paper written by Jos Stam [Stam 2003], which
suggests using a modified version of the Navier-Stokes
Equations which is able to simulate the fluid in real-time
while making the fluid look realistic.

Previous workwith fluid-basedmusic renderings have
performed real-time simulation [Bodonyi [n.d.]], but
have lacked clarity into the current state of given fre-
quencies. Without an understanding of where to look
and what to look for, users will be unable to make proper
use of a music analyzer. Our approach is to use a strict
mapping between both the frequency and the location as
well as the frequency and the color. This will enable users
to know where to look to understand what’s happening
with a given frequency as well as what colors to look
for to understand the amplitude of a given frequency.

2 TECHNICAL APPROACHES

2.1 Dynamic Inputs
Our fluid simulation uses velocity and density maps to
store dynamic inputs that are updated per frame based
on either user interactions with canvas or audio input.
These dynamic inputs will apply directional velocities
to grids and alter their densities, thus to simulate the
fluid flow and color change.

2.1.1 User Interactions. For user interactions, we listen
to users’ mouse events within the canvas. Velocity is
associated with the mouse-hover events and will be cal-
culated per frame. In each frame, we accumulate the
distance of mouse movement and use the

𝑠𝑢𝑚

Δ𝑡
to get

the velocity change over Δ𝑡 for 𝑥 and 𝑦 directions. We
then add this velocity to every grid following the mouse

Author’s address: Lloyd Brown, Yinan Chen, Sophie Wu, Weiyan Zhu,
UC Berkeley.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

movement path. As for density, its increment is triggered
by users’ mouse click-down event and will be terminated
when the mouse is released. Per frame user holding the
mouse, we add the density to a circular region of grids
underneath the clicked pixel. Therefore, the longer the
user holds the mouse, the higher the density underlying
the mouse area.

2.1.2 Audio Input. Our system is able to get audio in-
put from MP3 files and the user’s microphone. For both
inputs, we rely on the Web Audio API to process the
audio data. Once the user uploads a music file or the
system receives an input from the microphone, an audio
analyzer will be created. Per each frame, we use the an-
alyzer’s getByteFrequencyData() function to fetch the
real-time amplitude value for every range of sound fre-
quency. Each fluid represents a specific sound frequency
range and is aligned in-order with lower frequency on
the left and higher frequency on the right. We assign
each fluid a fixed positive velocity to allow it to flow
upward. The density change for each fluid is based on
the real-time change of amplitude.

2.2 Fluid Simulation
Our fluid simulation algorithms are mainly based on
the physical equations of fluid flow, the Navier-Stokes
equations. These equations are notoriously hard to solve
when strict physical accuracy is of prime importance.
Our solvers on the other hand are geared towards visual
quality. Our emphasis is on stability and speed, which
means that our simulations can be advanced with arbi-
trary time steps.
Our fluids are modeled on a square grid, which con-

tains the information of velocity and density as con-
stants in each grid cell. The simulation is therefore a set
of snapshots of the velocity and density grids.

Fig. 1. Navier-Stoke Equations for the velocity (top) and den-
sity (bottom) [Stam 2003]

2.2.1 Moving Densities. In this section, we will mainly
talk about our simulation for the density field according
to the equation above, which consists of three terms.
The first term represents that the density should follow
the change of velocity, the second implies the density

, Vol. 1, No. 1, Article . Publication date: May 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

2 • Lloyd Brown, Yinan Chen, Sophie Wu, Weiyan Zhu

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

will diffuse, and the third states the density increases
due to sources.
During implementation, the first step is to make the

density follow the velocity field. We use a technique that
models the density as a set of particles. In this case, we
can simply trace the particles through the velocity field.
The amount of density at these particles can be calcu-
lated by linearly interpolating the density from the four
closest neighbors of the particles. We use the following
procedure to update the density at each step. We focus
on one grid that contains the density from the previous
time step and one that will contain the new density. We
trace the latter cell’s center position backwards through
its velocity, and then linearly interpolate the density val-
ues from the previous grid and assign the value to the
current grid.
The second term takes into account the possible dif-

fusion at a certain rate. Considering a single cell, the
cell exchanges densities only with its four neighboring
cells. It is intuitive to simply add a portion 𝑝 of density
from each of the surrounding grinds to the current grid,
and then remove a corresponding 4𝑝 amount of density
from the current grid. However, this solution can result
in unstable simulation for certain p values. We consider
a stable method for the diffusion step instead. The basic
idea is to find the densities which yield the densities
we start with when diffused backwards. We can obtain
the amount of density these particles carry by linearly
interpolating the density at their starting location from
the four neighbors. As Jos Stam suggests, we utilized
Gauss-Seidel relaxation, which is a simple linear solver
that works well enough in our case. [Stam 2003]
The third step would be relatively easy because we

just filled in the density array based on the user’s mouse
input, audio files input and microphone input. For the
mouse input, we mapped the pixels from screen space
to the grid space in our simulator. Based on the user’s
mouse position on the screen, we will add densities to
grids at the corresponding locations in our simulator.
For the audio files or microphone input, we always add
densities at the bottom of the grids, andmove them up by
adding an upward velocity. We can get the amplitude at
different frequency channels from the audio input. The
frequency decides what horizontal positions, or columns
in our grad we will add densities to. The lower frequen-
cies reside at the left part of the grid, and the higher ones
are mapped to the right part. The amplitude determines
how many densities are we going to add to the system.
The higher the amplitude a frequency channel has, the
more density we will add to its corresponding column.
Finally, we record the audio data from the past frame as
well, and only add densities when the amplitude at one
frequency channel increases for a certain amount. This
way, we will only visualize the frequency channels that
have an obvious change.
We are consistently adding densities to our system,

however, we are assuming that the fluid in our simu-
lation is contained in a solid box. This means the fluid
cannot escape the box, resulting in a consistently in-
creasing total density amount. In the end, each grid will

have an infinite number of density. To address this prob-
lem, we removed a portion of the density from the grid
at each frame to make the simulation more stable.

2.2.2 Changing Velocities. In our velocity solver, again
we want to consider the equations above. Our velocity
solver resembles the density solver in many ways, but it
requires a new routine called project, which forces the
velocity to be mass conserving. Based on Hodge decom-
position, we can get the mass conserving velocity field
by removing the gradient field from our velocity field. To
get this gradient field, we followed the paper[Stam 2003]
to solve the Poisson equation. In the end, we have a mass
conserving velocity field which looks more realistic.

We also have another routine to set the boundary. We
assume the fluid is contained in a box with solid walls,
which means the horizontal velocity should be zero on
the vertical walls, and the vertical velocity should be
zero on the horizontal walls.

2.3 Rendering
The last portion of our project was to perform the ren-
dering of our music analyzer based on the density field
outputs satisfying the Navier-Stokes equation as well as
a scheme to allow users to differentiate between frequen-
cies. Our rendering was performed in Three.Js. We begin
with instantiating the scene using a perspective camera
looking in the -z direction. Then we turn to rendering
the geometry on the x,y plane at z = 0.

2.3.1 Core Loop. Our approach is to render based upon
the densities given by Navier-Stokes. We instantiate this
grid such that each cell is a single vertex with a starting
color of black at a unique position.We do this by creating
a Buffer Geometry to which we add arrays containing
the cells positions, size, and colors. We choose to render
all of our cells in a normalized space of [-0.5, 0.5] in both
x and y (this ensures the camera looks at the middle
of the grid. To get the positions we add 0.5 to our x
and y values, divide by the number of rows or columns
(depending on the axis) and subtract 0.5.

In each timestep we update the frequencies from the
music/microphone and use those frequencies to update
the densities as described earlier and store them in a
1d array. We then loop through each of the cell’s posi-
tions and convert them to the corresponding 1d index by
undoing the earlier computation. That number is used
to index into the density map returning a number of
particles. The number of particles is used to determine
the final color of each cell.
The choice of timestep size is a tradeoff between re-

sponsiveness and computation. We chose a timestep size
that offered reasonable fluidity while not being too tax-
ing on the computers used for testing. Though we did
not exploit this we believe there is room to optimize the
timestep size based on the hardware used for viewing.

2.3.2 Choosing Colors. To provide users with a strong
understanding of the state of each frequency we have
a strict mapping between color and frequency in our

, Vol. 1, No. 1, Article . Publication date: May 2021.

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

Real-time Fluid-based Music Analyzer • 3

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

rendering. To provide this we decided to linearly inter-
polate the spectrum of color across the x axis of our
rendering. Each column in the cell is assigned a base
color based on its position. This ultimately requires as-
signing RGB values to each column such that there are
no clear discontinuities in color to an end user.
We start by assigning each column a wavelength as

in the visual spectrum between 460nm and 650nm. The
first column is assigned to 460nm and the last is assigned
to 650nm. All other columns are linearly interpolated
to some value. The next step is to generate a base color
for each column based on their assigned wavelength.
To perform this translation we adopt an analytic ap-
proximation [Wyman et al. 2013]. Finally, we translate
these values into sRGB values as outlined by the original
proposal [Anderson et al. 1996].
With our base colors set we can determine the final

color for each position. Our goal was for each cell to
have the potential to reach the base color of its column
depending on the number of particles. We chose an ad-
ditive approach where each cell starts black and each
particle contributes a fraction of the RGB values. We
ensure the color does not pass the intended color by
capping the contribution of particles. Once we get the
color we update the color array in the geometry and
request an update from the geometry.

2.4 Problems encountered and Lessons Learned
Since we divided up our work in each phase to allow
all members contributed at the same time, we experi-
enced lots of challenges when integrating them together.
One specific example was after the first stage of our
project, creating the basic fluid simulation. In isolation,
the color assignment algorithm and the fluid simula-
tion functioned as intended but when combined led to a
bug creating discontinuities in the color of the simula-
tion. Going forward, we know it is useful to have sanity
checks as we progress within our individual stages and
to cleanly define the interfaces between our pieces.

We also spent a lot time trying to figure out how each
fluid algorithm worked. We once had an error that we
just kept getting unexpected results that we wanted, we
thought this error was related to the algorithm. Thus,
we tried to modify diffusion and advection functions to
find where the error was. However, in the end, the error
was in fact due to a JavaScript return type error that
has not been reported by Chrome inspection. Following
this experience, we learned that having a more thorough
understanding on the equation and algorithms would
help us narrow down the scope for searching errors,
eventually saving us time in debugging.

Another issue was with our project planning. We set
out to create a fluid-based simulator with several param-
eters but failed to understand exactly what our novelty
would be. This led to difficulties after submitting the
milestone where we struggled to figure out the end goal
of our project. Thankfully, we found some work related
to music and found a gap where we could contribute. In

the future, we will do a better job of understanding the
novelty of our ideas before implementation.

3 RESULTS
Our initial version of our fluid-based analyzer simulates
the Navier-Stokes equations for the incompressible flu-
ids. When the user clicks and drags their mouse inside
the grids, density will be added in the nearest few grids
and more smoke will show up. When the user moves
their mouse cursor without the mouse down, the fluid
will be moved like it is “stirred”. The fluid is contained in
a box with solid walls, so no fluid should exit the walls.
Figure 2 shows our progress after implementing these
features.
Our final product displays the effects of adding our

frequency processing (for both music and microphone)
as described in section 2.1 aswell as our color assignment
method as described in section 2.3.2. Figure 3 displays the
final result after translating music into frequencies and
shows the difference in color assignment for different
columns as well as different cells within a column.

Fig. 2. Fluid simulation with mouse

4 FUTURE WORK
Due to the time limitation of this project, there are sev-
eral potential improvements we did not get to implement.
Currently, our system is running on the CPU. If we can
convert our simulation codes to shaders and run the
simulation on GPU, our simulation will become more
efficient and we would be able to use a larger grid while
keeping the simulation in real time. Another extension
we can have is making the simulation 3D instead of 2D.
It will not be too hard to convert the simulation itself
from 2D to 3D, but we would need to come up with a
clever way to allow users to interact with the 3D scene.
Finally, we can add a GUI control panel on the website
to allow users to modify different parameters including
diffusion, viscosity and timestamp.

, Vol. 1, No. 1, Article . Publication date: May 2021.

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

4 • Lloyd Brown, Yinan Chen, Sophie Wu, Weiyan Zhu

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

Fig. 3. Music Visualization

5 CONTRIBUTIONS
We have planned our progress to first realize the 2D
fluid simulation. In this phase, we divided the work into
four parts so everyone could work on the project simul-
taneously. Yinan was responsible for handling the user
interactions with the grid and storing fetched user in-
puts as velocity and density arrays. Sophie and Weiyan
worked together to build the framework in three.js and
implemented algorithms to realize the fluid simulation.
Lloyd was in charge of constructing the grid system,
writing the shader, and rendering the scene. All mem-
bers have contributed to the integration and debugging
of the project.
To use our fluid simulation for a music visualizer,

we had to modify the input and rendering part. In this
phase, Yinan implemented a new feature to allow users
to upload audio files and get the frequency data from it.
Weiyan worked on getting input from the microphone
instead. Sophie managed to take the frequency data and
converted them to density/velocity input to the fluid
simulation. Lloyd was responsible for adding different
colors to our rendering. Same as last phase, all members
have contributed to the integration and debugging of the
project. The team has also spent much time tweaking the
simulator and parameters to improve the visual quality
of the music visualization.

The whole team worked together to deliver the paper
and presentation. Lloyd was specifically in charge of the
mini-demo.

REFERENCES
Matthew Anderson, Ricardo Motta, Srinivasan Chandrasekar, and

Michael Stokes. 1996. Proposal for a standard default color space for
the internet—srgb. In Color and imaging conference, Vol. 1996. Society
for Imaging Science and Technology, 238–245.

Gyula Bodonyi. [n.d.]. Music visualization with fluid simulation. http:
//gyulabodonyi.com/fluid-based-music-visualisations/

Jos Stam. 2003. Real-time fluid dynamics for games. In Proceedings of
the game developer conference, Vol. 18. 25.

Chris Wyman, Peter-Pike Sloan, and Peter Shirley. 2013. Simple Analytic
Approximations to the CIE XYZ Color Matching Functions. Journal
of Computer Graphics Techniques (JCGT) (12 July 2013). http://jcgt.
org/published/0002/02/01/

, Vol. 1, No. 1, Article . Publication date: May 2021.

http://gyulabodonyi.com/fluid-based-music-visualisations/
http://gyulabodonyi.com/fluid-based-music-visualisations/
http://jcgt.org/published/0002/02/01/
http://jcgt.org/published/0002/02/01/

	1 Introduction
	2 Technical Approaches
	2.1 Dynamic Inputs
	2.2 Fluid Simulation
	2.3 Rendering
	2.4 Problems encountered and Lessons Learned

	3 Results
	4 Future Work
	5 Contributions
	References

